LBNL-315E

User’s Guide for TOUGH2-MP -
A Massively Parallel Version of the TOUGH2 Code

Keni Zhang, Yu-Shu Wu, and Karsten Pruess

Earth Sciences Division
Lawrence Berkeley National Laboratory

May 2008

ABSTRACT

TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for
computationally efficient parallel simulation of isothermal and nonisothermal flows of
multicomponent, multiphase fluids in one, two, and three-dimensional porous and
fractured media. In recent years, computational requirements have become increasingly
intensive in large or highly nonlinear problems for applications in areas such as
radioactive waste disposal, CO, geological sequestration, environmental assessment and
remediation, reservoir engineering, and groundwater hydrology. The primary objective of
developing the parallel-simulation capability is to significantly improve the
computational performance of the TOUGH?2 family of codes. The particular goal for the
parallel simulator is to achieve orders-of-magnitude improvement in computational time

for models with ever-increasing complexity.

TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational
platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2
Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for
applications in the Yucca Mountain project, and was designed for execution on CRAY
T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes
all fluid property modules of the standard version TOUGH2 V2.0. It provides
computationally efficient capabilities using supercomputers, Linux clusters, or multi-core
PCs, and also offers many user-friendly features. The parallel simulator inherits all
process capabilities from V2.0 together with additional capabilities for handling fractured

media from V1.4.

This report provides a quick starting guide on how to set up and run the TOUGH2-MP
program for users with a basic knowledge of running the (standard) version TOUGH2
code, The report also gives a brief technical description of the code, including a
discussion of parallel methodology, code structure, as well as mathematical and
numerical methods used. To familiarize users with the parallel code, illustrative sample

problems are presented.

www.tough2.com

TABLE OF CONTENTS

ABSTRACT
1. INTRODUCTION ...ttt ettt ettt ettt et ettt et e be e st eneeas 7
2. REQUIREMENTS AND CODE INSTALLATIONcoooiiiiiieniieeenieeeceeeeeee 10
2.1 Hardware and Software Requirementscccccueeeriiiiiiiiniiiiniieenieeeeeeneeee 10
2.2 Code Compilation and Installationcoccueeeriieeniiieeniieeieeeiee e 11
3. METHODOLOGY AND CODE ARCHITECTUREccccceiiiiiiiiiieeeieee 15
3.1 Grid Domain Partitioning and Gridblock Reorderingccocceveeniiniienicnneennn. 16
3.2 Organization of Input and Output Dataccccceveevieiiiniininiinienieneceeeeenee 19
3.3 Assembly and Solution of Linearized Equation Systems..........cccceeeveeviieenneennnne. 20
3.4 Communication between ProCESSOTScovuiiiiiiiiiiiiiiiieeieeeeceeeeeee e 22
3.5 Updating Thermophysical Propertiesc.cceerueeeriiiiniieeniieiieesieeeeeesee e 22
3.6 Program Structure and FIOwW Chartccoooiiiiiiiiiiiieceeeeeee 23
4. DESCRIPTION OF INPUT FILEScooiiiiiiiieieeeeecteee et 26
4.1 Preparation of Input Data...........cooiiiiiiiiiiiiiee e 26
4.2 Input File FOIMatccocuiiiiiiiiiiieiieee ettt 26
4.3 Input Formats for MESHMAKER.........ccoooiiiiiiiiiiiecieeeeeeee e 51
4.3.1 Generation of Radially Symmetric Gridsccccceeevveeiriieniiieniieenieenieeee 52
4.3.2 Generation of Rectilinear Gridsccooueeiiiiiriiiiniiiiniiiinicenieceee e 55
4.3.3 MINC Processing for Fractured Media...........ccoocueerviieniienniienieeniieeeieeee 56
4.4 Special Input Requirements for TOUGH2-MPc.ccccooiiiiiiiiiiiiiieeees 58
4.5 Output from TOUGH2-MP........ccoooiiiiiiiiiiieiiieeteeteeee e 68
S.USER FEATURES ...ttt et st e 73
6. SAMPLE PROBLEMS ...ttt 74
6.1 Unsaturated FIow STMulationccccceeiiiiiiiiiiniiiiiiiececeeeeeeeee e 75
6.2 Contaminant Transport STIMUlAtION.........cc.eieriieeriiieeriieeiee et 76
6.3 Investigation of CO, Convection MIXiNgccceerieeriienieniieenieeiee e 78
6.4 Large-scale two-phase water and hydrogen flow simulationccceceeevneennee. 81
7. CONCLUDING REMARKSottt 90
ACKNOWLEDGEMENTooiiiiiiiiiiete ettt 91
REFERENCES ...ttt ettt et ettt e st e et e saeeens 93
APPENDIX A. RUNNING TOUGH2-MP ON MULTIPLE-CORE PCs..........c..ccc.c...... 98
APPENDIX B. RELATIVE PERMEABILITY FUNCTIONS........coooiiiiinieieeeeee. 100
APPENDIX C. CAPILLARY PRESSURE FUNCTIONScccccooviiiiiiiiiniieeeceeen 105

1. INTRODUCTION

TOUGH2 (Pruess, 1987; Pruess, 1991; Pruess et al., 1999) is a general-purpose
numerical simulation program for multi-dimensional, multiphase, multicomponent fluid
flows, heat transfer and contaminant transport in porous and fractured media. It has been
used worldwide for geothermal reservoir engineering, nuclear waste isolation,
environmental assessment and remediation, and modeling flow and transport in variably
saturated media. The TOUGH2-MP code, a massive parallel version of the TOUGH2
code, was originally developed on CRAY T3E and IBM SP supercomputers (Elmroth et
al., 2001; Zhang et al. 2001; Wu et al., 2002, Zhang, 2003). Since then, the parallel code
has been improved in many ways by optimizing memory use, improving communication
schemes, and including more fluid property modules (Zhang et al. 2003, 2006). Since its
development, the parallel code has been successfully applied to large-scale simulations
with up to several million gridblocks (e.g., Zhang et al., 2003a, Zhang et al. 2004,
Yamamoto et al., 2007, Senger et al., 2008).

The original TOUGH2 code, an enhanced version of the TOUGH code (Pruess, 1987),
was first released in 1991 (Pruess, 1991) with five basic EOS modules. The enhanced
version 2.0 of the TOUGH2 code was made available to the public in 1999 and included
additional fluid property modules (Pruess et al., 1999). The parallel version TOUGH2-
MP V1.0 (Zhang, 2003) was developed based on the original TOUGH2 V1.4 simulator
(Wu et al., 1999; Wu, 1999), i.e., by implementing parallel computing algorithms into the
V1.4 code. In early efforts at developing parallel simulation capabilities, Elmroth et al.
(2001) developed a parallel prototype scheme for the TOUGH2 code for Massively
Parallel Processor (MPP) computers. Zhang et al. (2001 and 2003) made further
improvements in distributing memory requirements and improving computational
efficiency for solving extremely large reservoir simulation problems with millions of
gridblocks.

As compared with the previous version of the parallel code, the current version of

TOUGH2-MP Version 2.0, has been significantly improved in the efficiency of its

communication schemes. The improvements in the new version are achieved through
reductions in the number of small-size messages and in the size of large messages. To
achieve a faster nonlinear iteration converging speed, at each Newton iteration
information exchanges across sub-domain boundaries are limited to primary variables
only, while all secondary variables are updated locally, using primary variables for the
sub-domain. Furthermore, the message-exchange speed is enhanced by using non-
blocking communications during both linear and nonlinear iterations. We have also
modified the AZTEC parallel linear-equation solver (Tuminaro et al., 1999) to non-
blocking communication. All these improvements result in the current version of

TOUGH2-MP being faster and more scalable than its predecessor.

In performing a parallel simulation, the TOUGH2-MP code first subdivides a simulation
domain, defined by an unstructured grid of a TOUGH2 mesh, into a number of sub-
domains using the partitioning algorithm from the METIS software package (Karypsis
and Kumar, 1998). The parallel code then relies on the MPI (Message-Passing Interface;
Message Passing Forum, 1994) for its parallel implementation. Parallel simulations are
run as multiple processes on a few or many processors simultaneously. Each
process/processor is in charge of one portion of the simulation domain for updating
thermophysical properties, assembling mass and energy balance equations, solving liner
equation systems, and performing other local computations. The local linear equation
systems are solved in parallel by multiple processors with the Aztec linear solver package.
Although each processor solves the linearized equations of subdomains independently,
the entire linear equation system is solved together by all processors collaboratively via

communication between neighboring processors during each Newton iteration step.

Although TOUGH2-MP V2.0 was designed for parallel computing using multiple
processors, the code can provide significant gains in computational efficiency even for
single processor machines by executing nominally parallel processes in sequential mode.
When multiple processors are available, it may be advantageous to partition a simulation
domain into more subdomains than available processors, making the program execution

partially sequential. This somewhat surprising finding can be explained from the behavior

of the linear equation solution in the subdomains, which for large problems consumes
most of the numerical work in a simulation. By partitioning into a larger number of
subdomains, we obtain a larger number of smaller linear algebra problems, which can be
solved more efficiently than a smaller number of larger problems. However, with
increasing number of processes there also is increased overhead from message passing,
which leads to optimal performance for some "intermediate" level of domain partitioning.
Another advantage of running parallel processes partially sequentially is that memory
requirements may be reduced, so that larger problems with more grid blocks can be

tackled.

The numerical scheme of the TOUGH2 code is based on the integral finite-difference
(IFD) method (Narasimhan and Witherspoon, 1976; Pruess, 1987, 1991). In the
TOUGH?2 formulation, conservation equations, involving mass of air, water and chemical
components as well as thermal energy, are discretized in space using the IFD method.
Time is discretized fully implicitly using a first-order backward finite difference scheme.
The resulting discrete finite-difference equations for mass and energy balances are
nonlinear and solved simultaneously using the Newton/Raphson iterative scheme. All
these numerical schemes are adopted by TOUGH2-MP. The parallel code also inherits all
the process capabilities of the TOUGH2 code, including descriptions of the
thermodynamics and thermophysical properties of the multiphase flow system. In
addition, FORTRAN 90 features are introduced to TOUGH2-MP, such as dynamic
memory allocation, array operation, matrix manipulation, and replacing “common
blocks” (used in the original TOUGH?2) with modules. All new subroutines are written in
FORTRAN 90. Program units imported from the original TOUGH2 remain in
FORTRAN 77, except for the use of data modules. The current version of TOUGH2-MP
includes following modules: EOS1, EOS2, EOS3, EOS4, EOSS5, EOS7, EOS7R, EOSS,
EOS9, ECO2N, EWASG, and T2R3D. Other members of the TOUGH family including
TMVOC and TOUGH+HYDRATE (Zhang et al., 2008) have also been parallelized.

The parallelization of TOUGH?2 improves modeling capabilities significantly in terms of

problem size and simulation time. The code demonstrates excellent scalability. Test

examples show that a linear or super-linear speedup can be obtained on typical Linux
clusters as well as on supercomputers. Because the TOUGH2-MP parallel simulator was
developed from an existing mature code, it inherits not only simulation functions from
the original code, but also all other features, including input/output format, error handling,
and improvements for code stability. These features provide robustness of the parallel
code and ease of use for the user community of the original code, using identical input
data, mesh and output files. Moreover, the domain decomposition approach and parallel
computation enhance model simulation capabilities in terms of problem size and
complexity to a level that cannot be reached by single-CPU codes. By using the parallel
simulator, multi-million gridblock problems can be run on a typical Linux cluster with
several tens to hundreds of processors to achieve ten to hundred times improvement in
computational time or problem size. Our tests indicate that the parallel simulator allows
much larger problems to be solved by multiple-process simulation even with a single-
processor computer. This surprising result can be understood in terms of efficiency gains
from decomposing one large linear algebra problem into a series of smaller ones, which
produces super-linear speedup. The growing availability of multi-core CPUs will make

parallel processing on PCs far more attractive.

This report provides a quick reference guide for utilizing the TOUGH2-MP code. The
users are supposed to have basic knowledge of the original TOUGH?2 family of codes. In
particular, this report together with the TOUGH2 V2.0 User’s Guide provides sufficient
information for users to apply TOUGH2-MP to subsurface flow simulation problems. A
detailed technical description of the physical processes modeled, and the mathematical
and numerical methods used in the code can be found in the user’s guide for TOUGH?2

Version 2.0 (Pruess et al., 1999).

2. REQUIREMENTS AND CODE INSTALLATION

2.1 Hardware and Software Requirements

TOUGH2-MP has been tested on IBM and CRAY supercomputers, Linux clusters, Macs,

and multi-core PCs under different operating systems. It has been successfully compiled

10

using g95, and Fortran compilers from Intel, IBM, and the Portland Group. The code
requires 64-bit arithmetic (8 byte word length for floating point numbers) for successful
execution. TOUGH2-MP can be run on any shared- or distributed-memory multiple CPU
computer system on which MPI is installed. The code has been run on LAM/MPI, OPEN
MPI, and MPICH2.

The total computer memory required by TOUGH2-MP depends on the problem size. For
a given problem, memory requirement is split among the processors used for the
simulation. The code automatically distributes memory requirements to all processors
based on the partitioning of the domain. All major arrays are dynamically allocated
according to the numbers of local gridblocks and connections assigned by domain
partitioning to each processor. As a result, larger problems can be solved using more
processors on a distributed memory computer system. For example, by far the largest
array used in TOUGH2-MP is “PAR”, the array for storage of secondary variables. Its

size in bytes (using 8-byte real data) is

M=(NPH*(NB+NK)+2)*(NEQ+1)*NEL*8 2.1

Here the parameters are the total number of fluid phases NPH, secondary parameter
number NB, component number NK, and gridblock number NEL. If NPH=3, NB=S,
NK=3, NEQ=4, NEL=10°, the total memory requirement for this array is about 1400 MB.
If 64 processors are used to solve this problem, each processor requires about 22 MB of
memory for this array. One of the critical bottlenecks of memory requirement is during
the reading of the MESH file through the master processor. This bottleneck is avoided by
a reading-distributing strategy that replaces the original MESH with two files. Detailed

discussion of this approach is provided in Section 4.4.

2.2 Code Compilation and Installation

The source code of TOUGH2-MP consists of 10 FORTRAN files: Compu_Eos.f,
Data_DD.f , Input_Output.f , Main_Comp.f , Mem_Alloc.f, Mesh_Maker.f, MULTL{,
Paral_Subs.f, TOUGH2.1, Utility_F.f , as listed in Table 2-1. Two library files

11

libmetis.a and libaztec.a are also needed for compiling the parallel program. The two
library files are generated by compiling the METIS and AZTEC software packages.
Different EOS modules need different “Compu_Eos.f” files. Compilation of each module
should use its own “Compu_Eos.f” file. In addition, the EOS9, T2R3D and TMVOC

modules require their own special modified core files.

Table 2-1 List of program files of the TOUGH2-MP source code

File name Functions Note

Main_Comp.f | Main program for time stepping and | Required
parallel running control.

Data_DD.f Data declaration and distribution Required
Input_Output.f | Input and output Required
Compu_Eos.f | EOS Modules and satellite functions | Required
Mem_Alloc.f | Memery allocation Required
Mesh_Maker.f | Meshmaker Optional
MULTLf Jacobian assembly Required
Para_Subs.f Parallelization related subroutines Required
TOUGH2.f Program entrance Required
Utility_F.f Utility subroutines Required
libmetis.a Compiled METIS functions Library file
libaztec.a Compile AZTEC functions Library file

Compilation and installation can be done through the following steps:

1. Download METIS at:
http://www-users.cs.umn.edu/~karypis/metis/metis/download.html

2. Compile METIS in the computer system where TOUGH2-MP will be installed.

3. Download AZTEC at:

http://www.cs.sandia.gov/CRF/aztec1.html
4. Compile AZTEC in the computer system where TOUGH2-MP will be installed.
(Guides for compiling METIS and AZTEC are provided with the downloaded

packages.)

12

. Transfer the core ‘“tough2-mp_v2.0.tar.gz” and the selected EOS module
“eosx.tar.gz” from the installation medium to your working directory.
. Use gunzip to unzip the files and then use the tar command to untar the archived files
and directories as follows:

gunzip tough2-mp_2.0.tar.gz

tar —xvf tough2-mp_2.0.tar

gunzip eosx.tar.gz
tar —xvf eosx.tar

Two directories named “tough2-mp” and “eosx” will be created under the current
working directory for the core and the selected EOS module respectively. Source files,
make scripts, and installation test input files will be located in the subdirectories. Two
additional subdirectories are created under the directory tough2-mp: ~/tough2-

mp/partition/ and ~/tough2-mp/utilities/.

. Copy az_aztecf.h and libaztec.a from ~/aztec/lib and libmetis.a from ~/metis-4.0 to
the subdirectories where source codes are located (~/tough2-mp/src). Copy additional
source file(s) and makefile from selected module package (~/eosx) to this
subdirectory. Replace all files at ~/tough2-mp/src by files with the same name at the
~/eosx/. The libaztec.a and libmetis.a files are created when Aztec and Metis is

successfully compiled.

. The “makefile” for three different compilers are provided: IBM, INTEL and

PORTLAND GROUP. You can choose the one most close to your compiler. In the
“makefile”, a wrapper compiler, mpif90, was specified for compiling the source
codes. The user may need to change the compiler name to the one installed in the
computer system by editing the file “makefile” at the line containing “FC=mpif90”.
The user may also need to specify the path for MPI “include” and “library” files.
Figure 2-1 shows a “makefile” for creating a TOUGH2-MP/EOS3 executable using
PORTLAND GROUP Fortran 90.

. Type “make” under the ~/tough2-mp/src/ subdirectory to compile the code. The

executable file “t2eosx-mp” will be created. After compilation, type “make clean” to

clean all intermediate files.

13

10. In order to successfully build TOUGH2-MP, the ¢ and FORTRAN compilers used for
compiling the MPI system, AZTEC, METIS and TOUGH2-MP source codes must be
compatible. A Fortran 90 or higher version must be used for FORTRAN source code

compilation.

for clusters
FC = npi f90
FFLAGS = -O -r8 -i4

The followi ng specifies the files used for the "standard
versi on"
OBJS = Data_DD.o Mem Al l oc.o MJLTI.o Main_Conmp.o TOUGH2. 0 \
Conpu_Eos. 0o I nput_Qut put.o Mesh_Maker.o \
Paral _Subs.o Utility F.o \

LIBS = libnmetis.a |ibaztec.a
tough2: $(0BJS)
$(FC) -0 t2eo0s3-nmp $(FFLAGS) $(0OBIS) $(LIBS)
cl ean:
rm-f *.o0 *.nod

Figure 2-1. A makefile for TOUGH2-MP compilation

If “invalid communicator” or other communication problems are encountered during
running the executable, user may try following:
1. Copy ~/tough2-mp/utilities/md_wrap_mpi_c.c to ~/aztec/lib to replace the original

one.

2. Recompile AZTEC and then use the new library libaztec.a to recompile the
TOUGH2-MP executable.

If you have difficulty using the linear solver “AZ_gmres”, you may try the following:

1. Copy ~/tough2-mp/utilities/la_dlaicl.f to ~/aztec/lib to replace the original one.

2. Recompile AZTEC and then use the new library libaztec.a to recompile the
TOUGH2-MP executable.

One may get additional speedup by using non-blocking communication version AZTEC

by performing the following steps:

14

1. Copy ~/tough2-mp/utilities/az_comm.c and ~/tough2-mp/utilities/az_matvec_mult.c

to ~/aztec/lib to replace the original files.

2. Recompile AZTEC and then use the new library libaztec.a to recompile the
TOUGH2-MP executable.

The library file “libmetis.a” contains subroutines of the METIS package for partitioning
irregular graphs and meshes. For reducing the requirement of computer memory, we use
4-byte integer for all large integer arrays in TOUGH2-MP. The corresponding arrays in
METIS must also be a 4-byte integer. This can be implemented by simply removing the
line of “#define IDXTYPE_INT” in head file “struct.h” of the METIS source code. The
library file “libaztec.a” provides subroutines for solving linear equation systems in

parallel.

3. METHODOLOGY AND CODE ARCHITECTURE

Domain decomposition methods (DDM) are used as a divide and conquer strategy for
solving large or time-consuming problems. The idea behind this approach is to divide the
computational domain into a series of subdomains. Through the local solutions on the
subdomains, a global solution is formed. Solutions for subdomains can be sought
simultaneously. Therefore this approach is suitable for parallel computations as long as
the computational work can be evenly distributed. The TOUGH2-MP numerical
computational scheme is based on a fully implicit formulation with Newton iteration. The
resulting linearized equations are solved by a parallel linear solver from the AZTEC
package (Tuminaro et al., 1999). AZTEC includes a number of Krylov iterative methods,
such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized
biconjugate gradient (BICGSTAB). Fully implicit scheme has been proven to be the most
robust numerical approach in modeling multiphase flow and heat transfer in reservoirs
over the past several decades. For a typical simulation with the fully implicit scheme and
Newton iteration, such as in the TOUGH2 run, the most time-consuming steps of the
execution consist of three parts: (1) updating thermophysical parameters, (2) assembling
the Jacobian matrix, and (3) solving the linearized system of equations. Consequently,

one of the most important aims of a parallel simulation is to distribute computational time

15

for these three parts. In addition, a parallel scheme must take into account domain
decomposition, grid node/element reordering, data input and output optimizing, and
efficient message exchange between processors. These important parallel-computing

strategies and implementation procedures are discussed below.

3.1 Grid Domain Partitioning and Gridblock Reordering

Developing an efficient and effective method for partitioning unstructured grid domains
is a critical step for a successful parallel-computing scheme. Firstly, to achieve better
numerical performance, parallel simulations require the distribution of gridblocks evenly
to different processing elements (PEs) or processors, i.e., the number of gridblocks
assigned to each PE should be roughly the same. Secondly, the number of connections
across domain bounds is minimized. The goal of the first requirement is to balance
computational work among the processors. The goal of the second requirement is to
minimize the time consumed in communication between processors (resulting from the
estimation of the coupling terms or connections across the domain bounds by different

processors).

In a TOUGH2-MP simulation, a model domain, or grid, is represented by a set of one-,
two- or three-dimensional gridblocks (elements), and the interfaces between any two
gridblocks are represented by connections. The entire grid system is treated as an
unstructured grid. From the connection information, an adjacency matrix can be
constructed. The adjacency or connection structure of the model meshes is stored in a

compressed storage format (CSR).

The adjacency structure of storing the model grid can be described as follows: In the CSR
format, the adjacency structure of a global-mesh domain with n gridblocks and m
connections is represented by two arrays, xadj and adj. The xadj array has a size of n+1,
whereas the adj array has a size of 2m. Assuming that element numbering starts from 1/,
the adjacency list of element i is stored in an array adj, starting at index xadj(i) and
ending at index xadj(i+1)-1. That is, for each element i, its adjacency list is stored in the

consecutive locations in the array adj, and the array xadj is used to point to where it

16

begins and where it ends. Figure 3-1a shows the connection of a 12-element domain;

Figure 3-1b illustrates its corresponding CSR-format arrays.

We utilize one of the three partitioning algorithms provided by the METIS software
package (version 4.0) (Karypsis and Kumar, 1998) for the grid domain partitioning. The
three algorithms are denoted, respectively, as the K-way, the VK-way, and the Recursive
partitioning algorithm. K-way is used for partitioning a global mesh (graph) into a large
number of partitions (more than 8). The objective of this algorithm is to minimize the
number of edges that straddle different partitions. If a small number of partitions is
desired, the Recursive partitioning method, a recursive bisection algorithm, should be
used. VK-way is a modification to K-way and its objective is to minimize the total
communication volume. Both K-way and VK-way belong to multilevel partitioning

algorithms.

Figure 3-1a shows a scheme for partitioning a sample domain into three parts. Gridblocks
are assigned to different processors through partitioning methods and reordered by each
processor to a local index ordering. Elements corresponding to these blocks are explicitly
stored in the processor and are defined by a set of indices referred to as the processor’s
update set. The update set is further divided into two subsets: internal and border.
Elements of the internal set are updated using only the information on the current
processor. The border set consists of blocks with at least one edge to a block assigned to
another processor. The border set includes blocks that would require values from the
other processors to be updated. The set of blocks that are not in the current processor, but
needed to update the components in the border set, is referred to as an external set. Table
3-1 shows the partitioning results. One of the local numbering schemes for the sample

problem is presented in Figure 3-1a.

The local numbering of gridblocks is carried out to facilitate the communication between
processors. The numbering sequence is internal block set followed by border block set
and finally by the external block set. In addition, all external blocks on the same

processor are in a consecutive order.

17

Processor 0

o—
®
®

Processor 2

Processor 1

(a) A 12-elements domain partitioning on 3 processors

Elements 1|2 3 4 5 6 7 8 9 10 11 12

xadj 1125 8 10 12 | 14 16 18 20 23 26 27

adj 211371241035 |46 |511 (28 |79 |8,10 |39,11 | 6,10,12 | 11
(b) CSR format

Figure 3-1 An example of domain partitioning and CSR format for storing
connections

Table 3-1. Example of Domain Partitioning and Local Numbering

Update External
Internal Border

Processor 0 Gridblocks 1 2 3 4 5 710
Local Numbering 1 2 3 4 5 67
Processor 1 Gridblocks 8 9 7 10 2 311
Local Numbering 1 2 3 4 5 67

Processor 2 Gridblocks 6 12 5 11 4 10

Local Numbering 1 2 3 4 56

18

Only nonzero entries of a submatrix for a partitioned mesh domain are stored on each
processor. Each processor stores only the rows that correspond to its update set
(including internal and border blocks, See Table 3-1). These rows form a submatrix
whose entries correspond to the variables of both the update set and the external set

defined on this processor.

3.2 Organization of Input and Output Data

The input data of TOUGH2-MP include hydrogeologic parameters and constitutive
relations of porous media and fluids, such as absolute and relative permeability, porosity,
capillary pressure, thermophysical properties of fluids and rock, and initial and boundary
conditions of the system. Other processing requirements include the specification of
space-discretized geometric information (grid) and various program options
(computational parameters and time-stepping information). For a large-scale, three-
dimensional model, a computer memory of several gigabytes is generally required and
the distribution of the memory to all processors is necessary for practical application of

TOUGH2-MP.

To efficiently use the memory of each processor (considering that each processor has a
limited memory available), the input data files for the TOUGH2-MP simulation are
organized in sequential format. There are two large groups of data blocks within a
TOUGH2-MP mesh file: one with dimensions equal to the number of gridblocks; the
other with dimensions equal to the number of connections (interfaces). Large data blocks
are read one by one through a temporary full-sized array and then distributed to different
processors. This method avoids storing all input data in a single processor (whose
memory space may be too small) and greatly enhances the 1/O efficiency. Other small-

volume data, such as simulation control parameters, are duplicated onto all processors.

All data input and output are carried out through the master processor. For extremely
large-scale problems, outputs may be performed by all processors involved in the
computation with multiple files by each processor writing out its own portion simulation

results. This approach may avoid extensive communication for output. Time series

19

outputs are written out by processors at which the specified elements or connections for
output are located. This approach could be extremely efficient for high latency computer

systems.

3.3 Assembly and Solution of Linearized Equation Systems

In the TOUGH2-MP formulation, the discretization in space using the IFD leads to a set
of strongly coupled nonlinear algebraic equations, which are linearized by the Newton
method. Within each Newton iteration step, the Jacobian matrix is first constructed by
numerical differentiation. The resulting system of linear equations is then solved using an
iterative linear solver with different preconditioning procedures. The following gives a
brief discussion of assembling and solving the linearized equation systems with parallel

simulation.

The discrete mass and energy balance equations solved by the TOUGH2 code can be

written in a residual form (Pruess, 1991; Pruess et al., 1999):

n nm nm nin

RK(xt+1):Mrll((xt+1)_MrIl((xt)_%{zA FK (xl+1)+VqK,t+l}:0 (31)

where the vector x' consists of primary variables at time ¢, R is the residual of

component K (heat is regarded as a “component”) for block n, M denotes mass or thermal
energy per unit volume for component &, V,, is the volume of the block n, and g denotes
sinks and sources of mass or energy, Ardenotes the current time step size, t+/ denotes
the current time, A,,, is the interface area between blocks n and m, and F,, is the “flow”

term of mass or energy exchange between blocks n and m.

Equation (3.1) is solved using the Newton method, leading to

K,t+1
OR’

_Z Ox;,

i

(X p —%,) = RON(x,) (3.2)

p

20

where x; , represents the value of i" primary variable at the p™ iteration step.

The Jacobian matrix as well as the right-hand side of (3.2) needs to be recalculated at
each Newton iteration, such that computational efforts may be extensive for a large
simulation. In the parallel code, the assembly of the linear equation system (3.2) is shared
by all processors, and each processor is responsible for computing the rows of the
Jacobian matrix that correspond specifically to the blocks in the processor’s own update
set. Computation of the elements in the Jacobian matrix is performed in two parts. The
first part consists of the computations related to the individual blocks (accumulation and
source/sink terms). Such calculations are carried out using the information stored on the
current processor, without need of communication with other processors. The second part
includes all the computations related to the connections or flow terms. Elements in the
border set need information from the external set, which requires communication with
neighboring processors. Before performing these computations, an exchange of relevant
primary and updating secondary variables are required. For the elements corresponding to
border set blocks, each processor sends these elements to the different but related

processors, which receive these elements as external blocks.

The Jacobian matrix for local gridblocks in each processor is stored in the distributed
variable block row (DVBR) format, a generalization of the VBR format. All matrix
blocks are stored row-wise, with the diagonal blocks stored first in each block row. Scalar
elements of each matrix block are stored in column major order. The data structure
consists of a real-type vector and five integer-type vectors, forming the Jacobian matrix.

Detailed explanation of the DVBR data format can be found in Tuminaro et al. (1999).

The linearized equation system arising at each Newton step is solved using an iterative
linear solver from the AZTEC package. There are several different solvers and
preconditioners from the package for users to select and the options include conjugate
gradient, restarted generalized minimal residual, conjugate gradient squared, transposed-
free quasi-minimal residual, and bi-conjugate gradient with stabilization methods. The

work for solving the global linearized equation is shared by all processors, with each

21

processor responsible for computing its own portion of the partitioned domain equations.
To accomplish the parallel solution, communication between a pair of processors is
required to exchange data between the neighboring grid partitions. Moreover, global
communication is also required to compute the norms of vectors for checking the

convergence.

During a parallel simulation, the time-step size is automatically adjusted (increased or
reduced), depending on the convergence rate of iterations. In the TOUGH2-MP code,
time-step size is calculated at the first processor (master processor, named PEQ) after
collecting necessary data from all processors. The convergence rates may be different in
different processors. Only when all processors reach stopping criteria will the time march

to the next time step.

3.4 Communication between Processors

Communication between processors working on neighboring/connected gridblocks,
partitioned into different domains, is an essential component of the parallel algorithm.
Moreover, global communication is also required to compute norms of vectors,
contributed by all processors, for checking the convergence. In addition to the
communication taking place inside the linear solver routine to solve the linear equation
system, communication between neighboring processors is necessary to update primary
variables. A subroutine is used to manage data exchange between processors. When the
subroutine is called by a processor, an exchange of vector elements corresponding to the
external set of the gridblocks is performed. During time stepping or Newton iteration,
exchange of external variables is required for the vectors containing the primary variables.
More discussion on the prototype scheme used for data exchange is given in Elmroth et al.
(2001). In addition, we have further improved the schemes by introducing non-blocking

communication to the Aztec package and Newton iterations (Zhang and Wu, 2006)

3.5 Updating Thermophysical Properties

The thermophysical properties of fluid mixtures (secondary variables) needed for

assembling the governing mass- and energy-balance equations are calculated at the end of

22

each Newton iteration step based on the updated set of primary parameters. In the same
time, the phase conditions are identified for all gridblocks, the appearance or
disappearance of phase is recognized, and primary variables are switched and properly
re-initialized in response to a change of phase. All these tasks must be done gridblock by
gridblock for the entire simulation domain. The computational work for these tasks is
readily parallelized by each processor handling its corresponding subdomain. A tiny
overlapping of computation is needed for the gridblocks at the neighboring subdomain

border to avoid communication for secondary variables.

3.6 Program Structure and Flow Chart

TOUGH2-MP has a program structure very similar to the original version of TOUGH2,
except that the parallel version solves a problem using multiple processors. We
implement dynamic memory allocation, modules, array operations, matrix manipulation,
and other FORTRAN 90 features in the parallel code. In particular, the message-passing
interface (MPI) library of Message Passing Forum (1994) is used for message passing.
Another important modification to the original code is in the time-step looping subroutine.
This subroutine now provides the general control of problem initialization, grid
partitioning, data distribution, memory requirement balancing among all processors, time

stepping, and output options.

In summary, all data input and output are carried out through the master processor. The
most time-consuming computations (assembling the Jacobian matrix, updating
thermophysical parameters, solving linear equation systems.) are distributed to all
processors involved. The memory requirements are also distributed to all processors.
Distributing both computing and memory requirements is essential for solving large-scale
problems and obtaining better parallel performance. Figure 3-2 gives an abbreviated

overview of the program flow chart.

23

|All PEs: Declare variables and arrays, but do not allocate array space

v

PEO: Read input data, not include property
data for each block and connection

v Y

| PEQ: Broadcast parameters to all PEs | | PE1-PEn: Receive parameters from PEO

v

| PEO: Grid partitioning |

v

| PEO: Set up global DVBR format matrix | \
v PE1-PEn: Receive local part DVBR format
| PEO: Distribute DVBR matrix to all PEs | matrix from PEQ

v v

All PEs: Allocate memory spaces for all arrays for storing the properties of
blocks and connections in each PE

v v

PEO: Read data of block and connection PE1-PEn: Receive the part of data which
properties and distribute the data belongs to current PE

| All PEs: Exchange external set of data A
A

v

| All PEs: set up local equation system at each PE |

v

| All PEs: Solve the equations using Newton’s method |

| All PEs: Update thermophysical parameters |

Converged? L
Next time step? yes
All PEs: Reduce solutions to PEO End

PEO: Output results

Figure 3-2. Simplified flow chart of TOUGH2-MP

24

Table 4-1. TOUGH2-MP input data blocks$

Keyword Function

TITLE One data record (single line) with a title for the simulation problem

(first record)

VER14 Optional; invoke using the Version 1.4 processing features.

MESHM Optional; parameters for internal grid generation through MESHMaker

ROCKS Hydrogeologic parameters for various reservoir domains

MULTI Optional; specifies number of fluid components and balance equations
per gridblock; applicable only for certain fluid property (EOS) modules

START Optional; one data record for more flexible initialization

PARAM Computational parameters.

RPCAP Optional; parameters for relative permeability and capillary pressure
functions

TIMES Optional; specification of times for generating printout

*ELEME List of gridblocks (volume elements)

*CONNE List of flow connections between gridblocks

*GENER Optional; list of mass or heat sinks and sources

INDOM Optional; list of initial conditions for specific reservoir domains

*INCON Optional; list of initial conditions for specific gridblocks

NOVER Optional; if present, suppresses printout of version numbers and dates of

(optional) the program units executed in a TOUGH?2 run

TIMBC Optional; introducing a table for time-dependent pressure boundary.

RTSOL Optional; provide linear solver parameters

FOFT Optional; list of gridblocks for time-dependent output

GOFT Optional; list of source/sink gridblocks for time-dependent output.

COFT Optional; list of connections for time-dependent output

DIFFU Optional; introduce diffusion coefficients

SELEC Optional, provide parameters for requirements by specific modules

ENDCY One record to close the TOUGH?2 input file and initiate the simulation

(last record)

ENDFI Alternative to “ENDCY” for closing a TOUGH2 input file; will cause

flow simulation to be skipped; useful if only mesh generation is desired

§ Blocks labeled with a star * can be provided as separate disk files, in which case
they would be omitted from the INFILE file.

25

4. DESCRIPTION OF INPUT FILES

4.1 Preparation of Input Data
Input of TOUGH2-MP is provided through a file named INFILE or separate additional

files (e.g. MESH, GENER, INCON), organized into a number of data blocks, labeled by
five-character keywords (Table 4-1). The input file “INFILE” of TOUGH2-MP is
compatible with the input file for TOUGH2 V1.4 and T2R3D V1.4 (Wu, 1999 and 2000),
and also the TOUGH2 V2.0. The parallel program may also receive additional data input
through optional input files (See Section 4.4 for details). In general, input files for V1.4

and 2.0 or combination of both are readily acceptable for the parallel simulator.

4.2 Input File Format
This section presents the data input formats for TOUGH2-MP. Most formats are identical

to corresponding inputs in V1.4 and V2.0. Please refer to the TOUGH2 User’s Guide
Version 2.0 (Pruess et al., 1999, Wu et. al., 1996), and User’s Manual for TOUGH2 V1.4
and T2R3D V1.4 (Wu, 1999 and 2000) for more information.

TITLE is the first record of the input file, containing a header of up to 80
characters, to be printed on the output. This can be used to identify

a problem. If no title is desired, leave this record blank.

VER14 the default version of the parallel code is compatible with
TOUGH2 V2.0. Some modules (EOS3, EOS9, T2R3D) can be run
with both V1.4 or V2.0 (V1.4 has its own specific features). To use
V1.4, this keyword must be presented right after the line for
TITLE keyword.

MESHM introduces parameters for internal mesh generation and processing.
The MESHMaker input has a modular structure organized by
keywords. Detailed instructions for preparing MESHMaker input

are given in Section 4.3.

26

Record MESHM. 1

WORD

Format(AS)
WORD
Enter one of several keywords, such as RZ2D, RZ2DL, XYZ,

MINC, to generate different kinds of computational meshes.

Record MESHM.2 A blank record closes the MESHM data block.

ENDFI

ROCKS

is a keyword that can be used to close a TOUGH2-MP input file
when no flow simulation is desired. This will often be used for a
mesh generation run when some hand-editing of the mesh will be

needed before the actual flow simulation.

introduces material parameters for different reservoir domains.

Record ROCKS.1

MAT
NAD

DROK
POR

PER(D),

Format (A5, 15, 7E10.4)

MAT, NAD, DROK, POR, (PER (I), I = 1,3), CWET, SPHT
Material name (rock type).

If zero or negative, defaults will take effect for a number of
parameters (see below);

>1: will read another data record to override defaults.

2>2: will read two more records with domain-specific parameters
for relative permeability and capillary pressure functions.

Rock grain density (kg/m3)

Default porosity (void fraction) for all elements belonging to
domain "MAT" for which no other porosity has been specified in
block INCON. Option "START" is necessary for using default
porosity.

I = 1,3 absolute permeabilities along the three principal axes, as

specified by ISOT in block CONNE.

27

CWET

SPHT

Formation heat conductivity under fully liquid-saturated conditions
(W/m °C).

Rock grain specific heat (J/kg “C). Domains with SPHT > 104J/kg
°C will not be included in global material balances. This provision
is useful for boundary nodes, which are given very large volumes
so that their thermo-dynamic state remains constant. Because of
the large volume, inclusion of such nodes in global material

balances would make the balances useless.

Record ROCKS.1.1 (optional, NAD =1 only)

COM
EXPAN

CDRY

TORTX
GK

Format (8E10.4)

COM, EXPAN, CDRY, TORTX, GK, PERF(1)/XKD3,
PERF(2)/XKD4, PERF(3)

Pore compressiblity (Pa-1), (/¢)og/ oP), (default is 0).

Pore expansivity (1/ °C), (1/ ¢)(0¢/0T),, (default is 0).

Formation heat conductivity under desaturated conditions (W/m
°C), (default is CWET).

Tortuosity factor for binary diffusion.

Klinkenberg parameter b (Pa'l) for enhancing gas phase

permeability according to the relationship kgus = kjiq * (1 + b/P).

The following three slots are for different parameters in Version 1.4 and 2.0.

For Ver 1.4:
PERF(1)

PERF(2)

PERF(3)

Absolute fracture continuum permeabilities along one principal
axis, as specified by ISOT=1 in block CONNE, for using the ECM
only.
Absolute fracture continuum permeabilities along one principal
axis, as specified by ISOT=2 in block CONNE, for using the ECM
only.
Absolute fracture continuum permeabilities along one principal
axis, as specified by ISOT=3 in block CONNE, for using the ECM
only.

28

For Ver 2.0:
XKD3

XKD4

For a dual-continuum model of dual-permeability, double-porosity
or MINC, PERF(3) is effective porosity of fracture continuum and
in this case, PERF(1) and PERF(2) must be set to zero.

Distribution coefficient for parent radionuclide, Component 3, in
the aqueous phase, m’kg (EOS7R only).
Distribution coefficient for daughter radionuclide, Component 4, in

the aqueous phase, m*kg (EOS7R only).

Record ROCKS.1.2 (optional, NAD =2 only)

IRP

RP(), 1=1,

Format (I5, 5X,7E10.4)
IRP, (RP(D), I=1,7)
Integer parameter to choose type of relative permeability function

(see Appendix B).

..., 1 parameters for relative permeability function (Appendix B).

Record ROCKS.1.3 (optional, NAD =2 only)

ICP

CP()

Format (I5, 5X,7E10.4)
ICP, (CP(I), I=1,7)
Integer parameter to choose type of capillary pressure function

(see Appendix B).

I=1, ..., 7 parameters for capillary pressure function (Appendix C).

Repeat records 1, 1.1, 1.2, and 1.3 for any number of reservoir

domains.

For T2R3D, an additional rock card is needed for radionuclide transport
properties, which should be located right before the ROCKS.1.2
Record ROCKS.1.1.5 (For T2R3D only)

ALPHAL
ALPHAT
ALAMDA

FORMAT(6E10.4)

ALPHAL, ALPHAT, ALAMDA, SKD, DIFFM, ALPHAFM
longitudinal dispersivity (m)

transverse dispersivity (m)

radioactive decay constant = In(2)/t;; (1/s)

29

SKD
DIFFM
ALPHAFM

distribution coefficient, Kq (m3 /kg)
molecular diffusion coefficient in liquid phase (m?/s)

averaged dispersivity for fracture/matrix (m)

Record ROCKS.2 A blank record closes the ROCKS data block.

MULTI

Permits the user to select the number and nature of balance
equations that will be solved. The keyword MULTTI is followed by
a single data record. For most EOS modules this data block is not
needed, as default values are provided internally. Available

parameter choices are different for different EOS modules.

Record MULTL 1

NK
NEQ

NPH
NB

NKIN

Format (515)

NK, NEQ, NPH, NB, NKIN

Number of mass components.

number of balance equations per grid block. Usually we have NEQ
=NK + 1, for solving NK mass and one energy balance equation.
Some EOS modules allow the option NEQ = NK, in which case
only NK mass balances and no energy equation will be solved.
Number of phases that can be present (2 for mostt modules).
Number of secondary parameters in the PAR-array (see Fig. 3)
other than component mass fractions. Available options include
NB = 6 (no diffusion) and NB = 8 (include diffusion). It always
equal 8 for Ver 1.4.

Number of mass components in INCON data (default is NKIN =
NK). This parameter can be used, for example, to initialize an
EOS7R simulation (NK= 4 or 5) from data generated by EOS7
(NK = 2 or 3). If a value other than the default is to be used, then
data block MULTI must appear before any initial conditions in

data blocks PARAM, INDOM, or INCON.

30

START

PARAM

(optional)

A record with START typed in columns 1-5 allows a more flexible
initialization. More specifically, when START is present, INCON
data can be in ar